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In a local verticEl coordinate system, two sets of elevation angles are
found for the tumbling rocket, and the set that satisfies an initial condition
exactly is the correct one. The deviation of the rocket tumbling plane from
the vertical plane can be determined at the times of closest encounter of the
magnetic field vector and rocket vector. The deviation at all times can be
approximately determined b,.) , i.asoidal curve fitting with tumbling frequency.
The angles hetween the rocket vector and moonlight vector during the instants
or moonviews at the onboard camera are also calculated.
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Attitude Determination of a Spinning and Tumbling Rocket
Using Data From Two Orthogonal Magnetom~ters

1.INTRODUCtION

This work was motivated by data obtained on Air Force scientific rocket No.

I" 1

A3 1.603. Electron and ion beam experimental were carried out on the rocket. In
orrier to analyre and interpret the scientific data. it is necessary to know the atti-

tu~de of the rocket during the instants of beam emissions. Of particular importance

is the angle between the rocket and geomagnetic field lines, because the presence

of the geomnagnetic field gives rise to anisotropic electron mation. The electrons

move easily along. but with difficulty across the geomagnetic field. Furthermore.
there are Indications2. that the magnitude of return current is less for a beam

emitted downwards along the magnetic field.
Other interests also motivated this work. The standard technique of attitude

determination with magnetometer data requires data from three orthogonal

(Received for publication 31 March 1981)
1. Cohen. H. A..* Sherman, C. . and Mullen. G. (1979) Spacecraft charging due to

positive ion emission: an experimental study. Geophys. Ries. Lett.
.G(No. 0):5 15. i

2. Winkierd. J.R. (1980) The application of artificial electron beams to magneto-
spheric research. Review of Geophysaics and Sosce Physics. U3:659-682.

3. Jacobsen, T. A..* and Maynard. N. C. (1980) Polar 5 -an electron accelerator
experiment within an aurora S. Evidence for significant spacecraft charging
by an electron accelerator at ionospheric altitudes. Planet. Sp. S.et
j&291 -307.
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magnetometers, the magnetometer telemetry signal conversion factors being known

from pre -lau'nch calibration. However. when only data f romn two orthogonal mag-

netomneters are available and the conversion factors are not given. it becomes a
challenging problem whether the attitude can still be e.atimated in a local vertical

coordinate system. For an object tumbling slowly. compared with its spinning, in
a vertical plane with sn-Wal sinusoidal variations, a method io offered for solving

this problem.d The position p of the spacecraft and the Earth's magnetic field vertor B at that
position are given. The magnetometer data (hereafter abbreviated ad m.d.) are
known to be approximately linearly related to the true magnetic data H by:

(M -DA = B

where M, D. and S are m. d., bias offset, and scaling fac,,or respectively. For a
triaxial magnetometer set, the three components of M can be obtained. If only two

magnetorneters are available. additional techniques have to be devised, The main
objective is to determine the directions of the magnetometers with r'espect to the
local vertical coordinate system, those with respect to the spacecraft coordinate

system being given. -

2, BUASOFFSET

If the mn. d. varies in a siimple sinusoidal manner and ther for a sufficiently
long period in a steady state. the bias offset can be determined as the mean of the

m. di. in that period, because

< A sin waa(t -to) + D > <A sin w.i(t - to)> + D is D .

If more than one significant frequency is present in the steady state time series,
the bias offset can be determined in the same manner. because

This method applies to the time series of each magnetometer.
If the time span of available data is short, such as three periods (3 X w ) or

less, for example, then the offset D has to be determined by least square curve

fitting, If good accuracy is desired. For rigid bodies. sine functions with known 1.-
frequencies are usually suitable for fitting purposes. The frequencie, can be coin -

puted by means of fast Fourier transform or maximnum entropy methods.
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After removing the bias offset, D, the magnetometer data IMI become direct-
ly proportional to the magnetic field components 181 . if data from only two mag-
netometers were avsilable, it would not be possible to derive exact knowledge of
the three dimensional vector M Mt) at any time t. However, in an ideal sltdation-that
is, when the spin vector of the vehicle remains constant in direction with respect
to an inertial coordinate system in which the magnetic field lines are at rest-the

scaling factor can be determined as follows.
Let Mt,(t) and M2Pt) be available during a spin period, M 3Pt) being unavailable.

Let Ml(t) be the measurement in the spin direction. The Earth'a magnetic field

B.(t) is assumed constant in the space and period considered. With the vehicle
spinning about the one-direction, the magnetometer readings f M(t) } at time t are
given by i

LM (t) = [i 0 0 1 M(to)I (1)
0 cos 9(t) sin 0(t) I

0 -sin 9IPt) con qP(t)

where

22 (2 1/I1 - s M(to) + M 2(to) + M3(to))

S being the scaling factor.

In a spin period, the extremnum value of M2 Mt) is given by

Mt2 (t0/80(t) : 0

which, using Eq. (1). gives

0(t) a tan"- M l(to)/M (to)j

Si

and j
Max(M (t),J {M2(to) + M2 t, O)$/2 (3)

so that

$ (t) + Mat $(t + M (t + M (t

9 2*1()]1210



Therefore,

mlI - 3 M It) ÷ s 1342(lt)) . 4

F Thus, despite the lacking of M3Ut) data at any time to the scaling factor S can be
determined, using Eq. (4), if the value I#I is known by using standard model cal-
culations or other appropriate data if available.

4. ASF ANGLE

The aspect angle a i(t) subtended by the ith magnetometer vector with the
Earth's magnetic field line B at time t is given by

•!S s (t) .I (t)
(:•lt) -Cos'1 =4 - 4 (5)

Thus.

ai(t) cos"1  [(6)

Of particular Interest for Rocket A31.603 to magnetometer No. 1. which points
forward along the rocket axial vector, the spin axis being about coincidental with

the geometric axis. Thub. the aspect angle a M(t) gives the angle subtended by the
rocket axis with the B line at the rocket s location.

S, TUMBLING AND SMNNING ROCKET

In general situationt, the spin vector of a vehicle does not remain constant in
direction with respect to an inertial coordinate system. For a pure tumbling and

spinning vehicle, the magnetometer data J M(t) I measured on the vehicle at time
t are given by

0 cos 0(t) sin #(t) 0 1

0 -sin (t) cos 0(t) -sin 8 (t) 0 cos 0 (t) (7)

4. SUA/AFGL (1979) Data Report Rocket No. A31. 603.

10
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where the tumbling ax" is the y-axis in the inertiul system and the spinning axis

to the a-axis in the spacecraft system. At time t a 0. 0 (t) and #(t) are defined
as 0. In a spinaiing period, the maximum value of Ma(t) is measured when $(t)

satisfies the following equation, at t a tino

4 [-sine sin, M1 (o) + coG OM2(0) + cog 9 sinM 3(0)] . 0

which gives, using Eq. (7),

Max [M (t)] a M2(0) + co%2 0 (t.) M2(0) + n &(

11 2(0) - 2 cog 0(t ) $in 0(t ) M (0) M (0) 11/2 e

If the spin frequency is much higher than the tumble frequency, then G (tm) would

not be too different from 9 (t= 0). which is rero. Thus.

Lim Max [M,(%)] M,(0) + M2(0) 1 (9)

which reduces to Eq. (3). the result for no tumble case.

6. ERROR ANALYSIS ON ASPECT ANGLE ALGORITHM

For low tumble frequency/spin frequency ratio, the aspect angle at i(t) sub-

tended by the ith magnetometer vector with the B line is given by. using Eq. (6).

-(t) cosI i(t)
i•2 (t) + Max2 [M 2 (t)]1

wk.ere Max(M2 (t)] is given in Eq. (8). This algorithm has its limitation, and will

now be discussed. The term MaxIM 2 (t)0 is used in c i formula because of necessity

due to the unavailability of M 3 (t) data. If there is no spin vector movement, it has

been shown (in Eq. (3)] that this term really equals the vector sum of the B compo-

nents perpendicular to the spin axis. However, if the spin axis moves, then, as $
shown in Eq. (8). the term Max|M2 (t)) becomes a not too simple combination of

SM2 (to) M 3 (to), and even M (to). The error in a (t) is given by 12
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3 m I
which is time (t and tm) dependent. For given values of Mi(t), MI(0). and 0 (tm), the
error Aai(t) can be computed, using Eq. (10). For a time span longer than a spin
period, it is reasonable to expect that Aa (t) is distributed with its mean near zero.
For Rocket A31. 603. the value of <0 (ti)> = 180. This can be observed from the

variations of ci (t) and a 2 (t): in a period of 0 2 (t). which is the aspect angle of the
magnetometer in spin plane, there are approximately 180 variations of a l(t), which
is the aspec't angle of the magnetometer looking forward along the spin axis. If the
values of all the terms in Eq. (10) are known, the error Aa i(t) can be determined
at any time t.

The realistic situation is more complicated, because the vehicle not only

tumbles but it precesses in a large conic angle. In general, three Euler angles
are needed for arbitrary rotations. Accordingly, Eq. (7) has to be modified to
accommodate three rotation matrices on the right-hand side, and Eq. (10) becomes
much more complicated. If 6uch a detailed analysis is necessary, it can be done.
However, if our objective is simply to estimate the raiige of error in determining

a.(t). Eq. (10) is believed to be adequate because Rocket A31. 603 spins and tumbles
only, almost. As pointed out in the previous paragraph, A0 i(t) is expected to have

its mean near zero, and for a l(t), Ac l(t) varies between * 180, with a standard

deviation probably lying within * 100 for its sinusoidal behavior.

7. TKE PROBLEM OF ATTITUDE DETERMINATION OF A
ROCKET AXIS

In this section, we determine the attitude of the rocket axis with respect to the • 1
local vertical coordinate system. For Rocket A31. 603, magnetometer No. 1 looks
forward along the spin axis, which is approximately the same as the geometrical
axis of the rocket. If the spin axis deviates considerably from the geometrical axis,
or if magnetometer No. I dons not look along either axis, there would be a con-

siderable source of error in the analysis. Nevertheless, even as a zeroth order
approximation, let us try to derive as much information about the rocket attitude

as possible, in order to gain an understanding of the behavior of the rocket. 'I-
12
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Let us summarize what we know at this stage, By using two magnetometer

data sets, the aspect angle a Wt) between a magnetometer vector and the Earth's

magnetic field vector B at the p')r~tion of the rocket is known approximately, at

irregularly spaced instants, about 1 sec apart. The magnetic field vector B is not

sensitive to time and space variation for the duration and trajectory span of the

rocket considered, and is. therefore, known with good accuracy. The problem now

is whether one can determine the attitude (azimuth and elevation angles) of the rocket

axis R with respect to a local vertical coordinate system (x east. y north.

z local vertical, that is, zenith).

-i

S. ZEROTH ORDER APPROXIMATION

Observation of a (t) variation against t shows that the aspect angle of the rocket

axis varies between nearly -180" to nearly +180, implying that the rocket tumbles

almost in a vertical plane. The deviation from the plane of motion is approximately

varying at less than 15*. That is, the rocket precesses at a large cone angle,

greater than 75%. so that it behaves almost like tumbling. From energy considera-

tions, it is more favorable for a rocket to tumble in its trajectory plane than to

wobble significantly out of its trajectory plane. A somewhat analogous situation is

known in the theory of satellite boom dynamics, in which modes of boom oscilla-

tions in the equatorial plane 5 " 6 of the dominant angular momentum of the system

are energetically more favorable than those wobbling out of the equatorial plane.

As a zeroth order approximation, let us assume, for the time being, that the
rocket tumbles in its vertical trajectory plane. P'his assumption, together with the

knowledge of a W(t). enables us to constrain the possible direction of the rocket axis

from those lying anywhere in a cone to only two directions, the intersections of the

a -cone with the vertical plane. Now, we have obtained two sets of solutions, at

all times t.

To decide which solution is the correct one at time t, we require that: (1) the
solution can be traced back continuously to the initial time t so that the two sets of

solutions can be distinctly identified, and (2) the set that does satisfy the initial

condition is the correct one. The initial condition is at time to . when the rocket

starts to tumble, due to the separation of its booster. At that moment, the rocket

is still pointing along its velocity vector. For Rocket A31. 603. we have found that

one of the two sets of solutions satisfies the initial condition exactly. This

5. Lai. S. T. , ai-C! IBavnani. K. H. (197 5) Dynamics of Satellite Wire -Boom Systems.
AFCRL-TR-75-u220, AD A014859.

6. Lai, S.T.. Mahon. ii. . and Smiddy, M. (1979) Dynamics of wire boom oscilla-
tions on a spinning satellite, J. Appi. Math. Phys. 13.00- 2 9 .

13
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encouraging result leads one to have confidence on the correctness orthe selection

of the solution sets, and to carry on further for reflnement of results.

9. ROCILI? ILXVATIOM AND A UITN ANGLU

We'deinnr the vwzxnutI3 and e.levation 0. angles -in a local vertical coordinate

system as in Figure 1.

z

Figure 1. Local Vertical
Coordinate System

OR is the vector of the rocket axis. In vector notation, we write the unit vector:

R (cos 0 sin cos 0 cos 0. sin 0). lU

Similarly, the magnetic field vector B can be written as

B (cos I sin D. cos I cos D. sin 1) (12) 4

where I is the inclination angle and D the dip angle. The cap denotes unit vector.

At White Sands where the rocket considered was launched. I = 60" and D = 11%.

Also. at launch time, it is known that * = 33. 5 eastward from north. It is believed

that this angle should remain unchanged until the booster separates at to = 64 seconds.

Since the rocket tumbles in an approximately vertical plane, the variation

Max 10 - < 0 > I should be small compared to the variation of 0 in a tumble period.

For the rocket considered, the ratio of such variations is less than 10%. Thus,

the angle # behaves almost like a constant, while the angle 0 varies.

From Eqs. (11) and (12). the angle a between the magnetic field vector B and

the rocket axis vector R is given by

14
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cooa i B"R QosOcos1cos(1-D))+sin 0sinI. (13)

The closest encounter between B and Rt occurs when

to Cos a
0 .(14)

which gives the condittion:

; tan I

tan . = tan! (15)

Suba•ituting Eq. (15) into Eq. (13), we have

coCos 2 1 c os2 1 c2 (• - D) + sin21Il2

and

'= D c~sl I~°'1] I/ 2/c a1
-1 2 21 /JDcos COS a -sin! osl . (16)

In Eq. (16). there are two sets of solutions. We can choose the set that varies

around the initial value at t = t where = 33. 5. Thus, this technique gives the

values of 0 at the moments of closest encounter between B and %t that is. when

For the rocket considered, there are only six moments of B and R closest

encounter. Together with the initial value of to , we have seven data points to be

fitted by a sine curve with tumble frequency. The fitted function gives 0(t) at all

times. Then. using Eq. (13), the angle 0(t) can be calculated at all points. This

determines the elevation and azimuth angles of the rocket at all points (Figure 2).

The results are listed in Appendix A.

In practice there is noise in the data, which should be smoothed by curve-fitting

or other filtering techniques before the method of closest encounter can be applied.

10. MOON DIRECTION

To calculate the elevation (t) and the azimuth (A) of the moon t.t the time of

rocket flight, we use the data in Table 1.

is
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The right ascensio valuem 5 h 54 ms" 0 5.1V. and 1 *h m 1 1 151. P. In a

coordnate syitem. Z, in which x - south. y a east (both on the equatorial plans),

and sa north etar. the direction cosines of zenith • vector is

(e ( 3o 2. 5. 0. sin 32.) 5

and that of moon A vector is

S(cos 8 cos 4 coa 0 sin*. sin 6)

where

S• . 1 0h 5 r 11l + 5h 5 4 m04' a -62.8-

8 = 18.475 I

In a local vertical system. L. in which x = south. y = east, and z : zenith. P. vector

defined in E system becomes matrix transformed by a rotation about -y-axis of

L-system. That is

JIIL L sin32.5. 0 -coo 32.5 coo os*

0 1 0 Coos sin

coo 32.5V 0 sin 32.50 Jsin 8 I
- -0.034]-0. 843

-0.536

The elevation angle (W, measured from the local horizon, and the azimuth angle

(A). measured clockwise from the east, are then obtained by equating

Jo Io° sin A -0.034

coo e Cos A [-0.84311sin 0.536

which yields

IA)= 182.3"1

A 382. 
(1

17



The reaults in 3q. (17) have been coafirmed, within a heM degree, by using APOL's

stemdard om trprogram OLUN. They do not. havwwtr. agree with the numbers

given by Cminberlain sad by Sluder mad Koftky.
Using the rocket attitude data and the moon direction (lq. (17)I, the &ngle P (t)

between the rocket axla * and the moon p at time t can be caLculated (Figure 3).
Aceo-dntg to design. the moon can not be seen unless 0(t) lies between 30 and 44"

(for backward view) or between 176" and 190" (for forward view) (see Figure 4).

Figure 3. Rocket Elevat~on Angle, Azimuth Angle. and the Angle Between
Si l Rocket and Moonlight

I ,
*W*W_ _ _

Fg 3Fi.ure 4. Relation of Rocket andg

Moonshine Directions. This J

A figure can almost be regarded as
,, Drt o looking down from zenith, and

Owshite the moonshine projection is in
west-east direction

7. Chamberlain. M. T. (1979) Data Analysis of Film From AFGL Rocket A31. 603.
AFGL-TR-79-0195. AD A005ITU.

8. Sluder. R. B. . and Kofsky. 1. L. (1978) Photoraphic Measurements of Electri-
cat Discharges. AFGL-TR-78-0082. AD A D5459.
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The range of moon viewing P values should be considerably wider than those spe-
cified by design. The uncertainties are due tot (1) a angle as computed by using

two magnetometers, (2) spin axis deviation from rocket axis. (3) noise in data,

(4) approximation in the theory of B and i close encounter. and (5) too few points

available in the close encounter curve fitting. The uncertainty due to source (1)

has been estimated in Section 6. Let us put up a rough figure for the combined

uncertainty: t 20% as an educated guess only, unless someone can give a reason

to indicate otherwise.

The moon view times are taken from Chamberlain7 and are given in co' nn I

of Table 2. The magnetic aspect angles a (t) are given in column 2. The .m:putod

elevation and azimuth angles of the rocket in a (east. north. senith) coordinate

system are given in columns 3 and 4. The angles W (t) between the moonshine vector

and rocket vector are given in column 5.

Table 2. Rocket Attitude Angles During Moon View Times

Angle (t)
Moon View Magnetic Aspect Rocket Rocket Between Rocket
Time. sec Angle a (t) Elevation Azimuth and Moon

125.1 65.6" -125.5" 31.1" 79.50

159.5 3688o - 39.30 58. lo 26.6I

266.2 36.70 - 97.50 43.1' 62.8*
406.3 21.2" - 75.30 52.9" 46.30

Since the moonshine is almost in west to east direction, dipping downwards, it is
reasonable that the rocket should lie in a south-west to north-east direction, dipping

downwards, in order for the camera on the rocket to view the moon. Qualitatively.

the rocket elevation and azimuth angles as showa. in Table 2 satisfy this criterion.

As for the angle P between the rocket and the moon, the last three numbers fall in

the range (300, 440) t 20°% as they should. The first # angle lies just ov•side this

range. In no time is the moon seen in a forward view.

IgI

l I



.2

Refereces -

4

1. Cohen. H.A.. Sherman. C.. and Mullen, G. (1979) Spacecraft charging due to
positive ion emission: an experimental study, Geophys. Res. Lett. j
6.(No. 6).515.

2. Winckler. J. R. (1980) The application of artificial electron beams to magneto-
spheric research. Review of Geonhysics and Space Physicss. U:659-682.

3. Jacobsen. T. A.. and Maynard. N. C. (1980) Polar 5-an electron accelerator
experiment within an aurora 3. Evidence for significant spacecraft charging
by an electron accelerator at ionospheric altitudes. Planet. Sp. SO.
;J:291-307.

4. SUA/AFGL (1979) Data Report Rocket No. A31. $03.

5. Lai, S. T.. and Bhavrmni. K. H. (1975) Dynamics of Satellite Wire-Boom Systems.
AFCRL-TR-75-0220. AD A014859.

6. Lai. S.T.. Mahon, H. . and Smiddy. M. (1979) Dynamics of wire-boom oscilla-
tions on a spinning satellite. J. Appl. Math. Phys. 30:1-29. -

7. Chamberlain. M.T. (1979) Data Analysis of Film From AFGL Rocket A31. 603.
AFGL-TR-79-0It5. AD A0792T0.

8. Sluder. R. B.. and Kofsky. I. L. (1978) Photographic Measurements of Electri-
cal Discharges. AFGL-TR-78-0082. AL) A003409.

i2



Appendix A ILJ

AtiOud Oum of Onum NM. A31.6M

Column I shows universal time starting from the moment of booster separation.
Column 2 Unto magnetic pitch angles [rut. P). Columns 3 and 4 are caledlated ele-

vation aiad azimuth anles in the local vertical coordinate system. Column 5 gives

ta:* calculated moon pitch angles. ]
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